THE PETRONAS TOWERS, KUALA LUMPUR: BENEFICIAL USE OF HIGH STRENGTH CONCRETE

K. Gurusamy and W.F. Price

[^0]Multi-purpose High-rise Towers

"Conquest of Vertical Space in the 21st Century"
 London, 7-10 October 1997

EDITED BY
 Professor Dr. Ing. H. R. Viswanath President, International Federation of Highrise Structures
 Professor J. J. A. Tolloczko and J. N. Clarke

 $\mathrm{E} \& \mathrm{FN} \mathrm{SPON}$
 London - Weinheim - New York • Tokyo - Melbourne • Madras

1

Facsimile Facer

Taywood Engineering Sdn Bhd Box \#19, $5^{\text {th }}$ Floor, South Block Wisma Selangor Dredging
142-A Jalan Ampang 50450 Kuala Lumpur Tel. : 60321633532 Fax : 60321633533 Email: telmal@my.taylorwoodrow.com

To	$:$	Pioneer Sun-Mix Concrete	From	$:$
Ir. Dr. Kriban G.N.				
Attn	$:$	Mr. John Day	File	$:$
Fax	$: 03-56313233$	Date	$:$	$\mathbf{6}$ December 2001
Copy $:$	-	Ref	$:$	TESB/mm/01/F110
			Pages	$:$

SUBJECT: Presentation Paper

Dear John,

Please find my paper on the Petronas Towers results which is what you need (see page 393) - insitu strength.

Regards,

Enc.

K. GURUSAMY

Taywood Engineering Sdn Bhd, Kuala Lumpur, Malaysia W. F. PRICE

Taywood Engincering Lid, Southall, UK

The use of high strength concrete (HSC) in structures is increasing worldwide and has had a significant impact on construction in Malaysia. The most important breakthrough in the use of high strength concrete in Malaysia is the Petronas Twin Tower project. The project is part of a massive real estate development in Kuala Lumpur City Centre. The world's tallest building has been constructed with concrete columns, ring beams and a concrete core of 40 to .80 MPa (characteristic cube strength) with steel long span floor beams.
 and related benefits of high strength concrete. In particular the pre-construction consultancy input, undertaken by way of trial column construction, to support the use of the high strength concrete, and the requirements for curing, insulation, striking time, strength development, concrete temperature and strain monitoring are outlined. The concreting logistics, construction approach and quality assurance of concrete supply are examined. The future prospects for the use of HSC in construction projects is also considered.
Keywords: Concrete, cracking, high strength, i PFA, silica fume.
 Kuala Lumpur city centre which will eventually include office buildings, a retail centre, hotels, residential buildings and substantial public parks, gardens and lakes. The twin Petronas Towers are linked by a skybridge at mid height and associated retail base and parking facilities are the first developments on the site and due to be ready in 1997. It consists of $216,901 \mathrm{~m}^{2}$ of total floor space, 88 levels, (6 Basement and 82 superstructure) rising to a height of 450 m above street level. It is currently the tallest building in the world. This is the first project in Malaysia where such high strength concrete has been specified. To achieve the completion of the structural frame in approximately 28 months every floor needed to be constructed in approximately 4.3 days thus putting great pressure on the contractor to achieve rapid, delay free construction.

The main structural system for the superstructure and foundation design were selected after a rigorous study and evaluation by the Design and Project Management team. The structural approach in the tower frame combines the most favourable aspects of concrete and steel construction. Structural Steel is used for long-span typical floor beams supporting metal deck slabs. Structural concrete is used in foundations, in the central core, in sixteen tower perimeter columns and variable depth perimeter beams and also in twelve smaller columns and ring beams around the bustle (half height mini tower attached to the main tower), Outrigger beams link the core and perimeter at levels 38 to 40 for additional efficiency. (1) Muuti-putpose High-rise Towers and Tall Buildings, edited by H.R. Viswanath, J.J.A. Tolloczko and J.N. Clarke.
Published in 1997 by E \& FN Spon. 2-6 Boundary Row, London SEI 8 HN, UK. ISBN: 0419233008

 tower are 80 MPa .

 MBa raft concrete contained 9% silica fume (SF) to achieve the required strength, workability

 plant, cooling the aggregate by spraying with water and sheltered as feasible and stockpiling cement for several weeks so as to cool rather than being used warm from the mill. This
 not clear on what basis this limit was chosen.

In mass concrete pours, significant cracking can occur due to temperature differentials between concrete core and the surface of concrete. ${ }^{(3)}$ To prevent a large heat loss and
 insulated using 50 mm thick polystyrene and with the pre-cast formwork panels providing

 not only dependent on temperature differentials but also restraint and the aggregate type.

LONVLTASNOD NOILOMYLLSNOO MAId

 the very limited local experience with the use of high strength concrete, the contractors were required to demonstrate that the requirements of the project could be successfully achieved prior to actual construction of the structural elements. In this context the first author was involved in the construction of full size trial columns and rigorous monitoring of concreting materials for the Tower 2 package on behalf of the contractor Samsung-Kukdong-Jasatera Joint Venture (SKJ). Potential problems were identified and brought to the attention of the contractor and relevant changes made where practical. The background to the put sinnsar 1 səl po

 scope to make significant changes.

 hydration and subsequent cracking of concrete, and stringent $\mathrm{QA} / \mathrm{QC}$ requirements to achieve consistent concrete were highlighted and accepted as important aspects which needed
 formwork (<15 hours), minimising cracking in corewalls and curing requirements to achieve

 suoplea! for future projects involving High Strength Concrete considered.

TLG甘ONOD HLONTHLS HDIH 5 S SLANT

\checkmark
Various approaches were considered for the structure framing

 strength concrete option include: Strength concrete option include:
Structural Efficiency - Colum
vertical loads at a cost per unit load which is a small fraction of that of ste concrete carry strength concrete further improves efficiency angl fraction of that of steel. Using high

 while the core walls serve as fire rated structural members as and structural materials lateral load.
heavy cranage or special rigging to lift large prefabricated building frame means and avoids has allowed considerable flexibility to the contractors and maximise use of the stents. This local labour pool.

Occupant Comfort - The high average mass density of the towers, lengthens the building

 upported on steel beams.

 west making the core quite stiff and efficient.

 rectangular friction piles (barrettes) varying in depth from 40 m to 110 m . The variation in
pile lengths was to control predicted supported on formation underlain by limestone. The 13,200 cubic meters of concrete ines of Kenny Hill

Concrete Strength $\quad 80 \mathrm{MPa}$ with a 20 MPa margin which meant a

 strength requirements at ages greater than 28 dater/cement ratio of 0.25 was specified for this
 grade. This was achieved with a combination of 1 , formwork striking was required at above. Due to the fast track constructimum strength of 15 MPa . Tests were therefore strength development and in this context in-situ strength was conducted to ascertain early age strength developmentand advantage of strength gain with
ve strength testing at 12 hours, 16 hours,
Concrete cube samples were taken for compressive strengete cubes were made, stored and
 - 10 paco
 standard cube testing. The results at 12 to 14 hours, for both Columns 1 and 2 , are considerably higher compared to standard cube compression strengh as expectent though in age insitu strength indicates that there is very litte continu The significance of this is further
 sampling and testing gives a conservative estimate of the in-situ compressive strength and the תи! proceed comfortably between 10 and 12 hours for this grade (80 MPa) concrete for the 60
 fracture test could be used to estimate in-situ strength for formwork removal.

Note: Column 1 (Grade 80, PC/SF)

Trial Column Casting

 As part of the matcrials selection several trial columns of actual dimensions were poured and monitored for heat of hydration, strain, cracking potential and durability. The original mix Lhe concrete was reviewed to minimise the risk of early age thermal cracking and in keeping With the requirements for early age striking of formwork (at 10 to 12 hours). Advice was given on the concrete insulation requirements during casting, use of development particrete, the requirements for fresh concrete properties, in-situ strength cracking potential. cracking potential.Tume trial columns werc of dimensions 2.4 m leight and 2.4 m diameter. Two identical casting. The forms used were the same system formwork as used for the actual column half of the formwork was removed just under 8.5 sourate halves bolted together on site. One was removed after 13 hours, for both columns. The column casting casting while the other pumped concrete in a continuous pour. Both columns took 1.5 hours to pour.

Concrete Mix

The concrete for the mock up columns was site batched. Two concrete mixes were considered, one PC/SF and the other PC/PFA/SF. Pulverised Fuel Ash (PFA) was introduced
 APMC). According to APMC producl literature, masscrete contains approximately 20% by wt of PFA interground with PC. The mix therefore approximated to $460 / 69 / 35 / \mathrm{PC} / \mathrm{PFA} / \mathrm{SF}$ mix, i.e. a 12% PFA replacement. The concrete mix designs are shown in Table 1 .
before the concrete was placed. The slump was betwecn $190-220 \mathrm{~mm}$ while the fiesh concrete temperature ranged from $32^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$.

Table 1. Concrete mix design

Item	Column 1 PC/SF	Column2 PC/SF/Masscrete
PC $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$	505	184
Masscrete $\left(\mathrm{kg} / \mathrm{m}^{3}\right)^{*}$	-	345
Silica fume $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	30	35
Water (litres)	134	152
C. Aggregate $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1000	1006
F. Aggregate $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	750	728
P300N (Retarder)	1.00	0.8
R1000 (Superplasticiser)	9.06	8.48
Slump (mm)	220	220

PFA replacement.
based on assumed external restraint factor of 0.36 ．This will be significantly lower for

 case．The visual examination of the column confirmed that no thermal induced cracking had occurred on the external surface of the column．
The additions of flyash to the column 2 concrete mix delayed the heat development（i．e． maximum temperature differential occurred on the cool down phase，rather than in the heat up phase as for the PC concrete used in Column 1），and slightly lowered the critical
 cracking in the concrete by comparison with the column 1 concrete．
The strain profiles did not indicate any cracking strain relief during the concrete cool down phase for Column 1 and 2．In other words no internal thermal cracks formed during the concrete cool down．The strain results indicated heat up phase exterior cracking in Column 1 which was consistent with the visual results．
The cracking in trial Column 1 was primarily caused by differential temperature induced strain．The probability of cracking in Column 2 was reduced by the use of PFA．
Fig．2．Temperature profile within the centre and cover zones of a 2.5 m diameter high
$108 \quad 120 \quad 132 \quad 144$
©
8
8
品
$\stackrel{\rightharpoonup}{\sim}$
$\stackrel{\sim}{\sim}$

은ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅆㅇㅇㅇ
（0 9ヨa）ヨ

Concrete Temperature，Strain and Cracking Potential columns．The strains were period and apparent strain of vibrored automatically with a data logger which m in the readings were also recorded on a dats wire gauges（VWG＇s）．Thermocouple temperature in Table 2．Temperature data is temperature between the two concrete mixes utted in Fig． 2 showing differences in peak Table 2．Significant strain temperatur mines used．
Tabe Signincant strain temperature monitoring data

Concrete placement temperat	Column 1 PC／SF	Column 2
Peak temperature	$32-33^{\circ} \mathrm{C}$	$\frac{-1}{33-35^{\circ} \mathrm{C}}$
Temperature rise per 100 kg cementitious materials	91.6° at 29 hrs $11.6^{\circ} \mathrm{C}$	$\begin{gathered} 33-35^{\circ} \mathrm{C} \\ 87^{\circ} \mathrm{C} \text { at } 26.5 \text { hrs } \\ 9.8^{\circ} \mathrm{C} \end{gathered}$
Temperature to below $35^{\circ} \mathrm{C}$ Max．temp．differential Centre to comer	after 8 days	after 8 days
Centre to top middle Centre to side	$57.5^{\circ} \mathrm{C}$ at 27.5 hrs 44.6° at 29 hrs	$52.9^{\circ} \mathrm{C}$ at 33 hrs
Max．bulk temperature（tb）	$34^{\circ} \mathrm{C}$ at 43.5 hrs	$32^{\circ} \mathrm{C}$ at 40.5 hrs $30^{\circ} \mathrm{C}$ at 43 hrs
Induced strain（microstrain） Centre to corner	$82.7{ }^{\circ} \mathrm{C}$	$79.7^{\circ} \mathrm{C}$
Centre to top middle	146	118
Centre to side	113	71
Maximum restraint＊	86	67
	0.27	0.24

column．
In column l cracking first apeared approximately 14 bater column at position CR1（see Fig．3）and was indy 44 hrs after casting，at the top of the insulation insulation at approximately 13 hours，during by the removal of the 50 mm occurred at the patterns observed corner of the column where cracking initiated differential temperature face has cooled while the differential temperature induced cracking on the inting up and expanding in volume the outside from a maximum of maced cracking on the exterior surface． column 1 at 23 hours after to less than 0.1 mm ．The examination of track widths ranged crack width 0.25 to 0.55 mm ．Farting also confirmed a crack right across the column surface of In the case of column 2 although the temperature erior top conted limits for granite concrete（of $27.7^{\circ} \mathrm{C}$ ）cracential results exceeded the e high differential tempecolumn，nor had it propagated down the column not initiate at the enefited from early age creep relief ped at very early age do not have sharp was because en early age creep relief．The theoretical limiting thave sharp gradients and
a
High strength concrete in the Petronas Towers 391
Summary
The trial column casting, monitoring and assessment indicated that concrete used in the
 early age thermal cracking, PFA reduced the risk of early age thermal cracking occurrence and propagation by:

- slowing down the rate of heat generation
- reducing the peak heat of hydration temperature
- reducing and delaying the maximum differential
- reducing and delaying the maximum differential temperature
Formwork stripping could be carried out comfortably between 10 and 12 hours for this grade (80 MPa) concrete for boih concrete mix designs investigated. Significant considerations are:
- in situ concrete compression strength exceeds 15 MPa
- standard cube sample compression strength exceeds 15 MPa showed the extent of increase in in-situ strength gain at early age sheel formwork removal does not influence thermal crack occurr - insulation
- the formwork removal will need to prevent excessive surface concrete tearing during
removal particularly if removed too early.
 trial column 2 performance (i.e. no cracks observed). Inappropriate use of insulation can increase the likelihood of cracking and is therefore best not used. Further recommendations were made included the following:

1) The initial target mean compressive strength of 20 MPa above the 80 MPa grade should be relaxed to allow lower a cement content and hence lower peak temperature. The margin requirements were never relaxed but the 80 MPa strength compliance of the concrete mix was assessed at 56 days rather than 28 days.
2) Relaxation of the water/cement ratio requirement of 0.25 . In practice a 0.27 water/cement ratio was used.

PLAN VIEW
Curing and Insulation
Insulation of the colume column provide no significant insulation. Column 2 performance (i.c. no cracks observed). It was considered essential based on the trial of insulation i.e. removal before the ine he likelihood of cracking and no insulation was andure of concrete had peaked can increase vere covered with a roll on applied curing membrane immeding construction. The columns

Routine strength and workability tests Production records check

Tests of elastic modulus, shrinkage and creep
General production supervision.
Check of delivery docket
Re-verification of temperature and slump
Strength verification for formwork removal
Inspection of inished surfaces.

HLSNGELS OLISNI

In conventional concretes the use of PFA at levels of 25% or greater can produce a hydration of the PFA.
The limitations on cement hydration discussed above also reduce heat output and many
 more conventional concretes.

In the case of a binder containing Portland cement, PFA and silica fume, there is another factor leading to limited hydration. Both PFA and silica fume are pozzolanic materials and react with free lime. However, due to its extreme fineness, silica fume is much more reactive and will readily exhaust the available lime (produced by the Porland cement) by preferited
 Concretes containing pozzolanic materials often respond better to high imiernal emperatures than Portland cement concretes in terms of sten.

Discussion of Data

 as to the development of insitu strength.During the construction and testing of the trial columns, there were some concerns expressed
as to the development of insitu strength. using standard cubes, at later ages the core strengths were 24% and 20% lower than the cube strengths for columns 1 and 2 respectively (Fig. 1).

This is consistent with the effects of high internal concrete temperatures on concrete strength which accelerate early strength development at the expense of longer term strength. In high strength concrete, however, this effect is exaggerated by the possibility of self desiccation. At low water/cement ratio's the amount of available internal water in the structure is small. This may act to inhibit continued cement hydration and hence longer tern strength development. ${ }^{(8)}$ The standard test cubes by contrast have abundant available (external) water for hydration.
392

 contractor to establish a comprehensive the contractual requirements put the emphasis on the To avoid problems on was given the contract to crect and operate an on-site concrete plonete ready mix company plants were established and a third added later Alle concrete plant. Initially two wet-mix the site on internal site roads which meant negigible delays between be distributed around locations.

Materials used

Alt cement cane from APMC plant in Rawang including masscrete which is an interground . aggregate was a $20-25 \mathrm{~mm}$ crushed granite which came mainly from the Golden Ple coarse in Ampang about 10 km from site. The sand was obtained from Puchengen Plus quan lage stock of tin mine sand and delivered after processing. All chemical admixturs lupplied by Master Builders Teclunologies (MBT), this included Silica Fume, a Cons were and a conventional Superplasticiser (R1000). These were Iater reviewed for pumping requirements.

Mix Design

The concrcte mix design was aimed at producing a cohesive pumpable mix with a targe slump of 200 mm and a characteristic 56 day strength of 80 MPa . The contract specification 027 . The requisite mix tatio to 0.25 for grade 80 MPa concrete. This was later relaxed to admixtures. Strict control on all materials by incorporating PFA (masscrete) and chemical the specification requirements. The Grade 80 concrete was soncrete which in general met April to December 1994. Quality Assurance

Each contractor was required to opcrate a quality plan approved by the client The first period March 1993 to Felved in establishing the onsite quality plan for Tower 2 over the concrete producer and in cstablishing the contractors own supervision materials suppliers, the following were undertaken.

- Aggregates and Sand:
- OPC and Masscrete:

Initial approval testing including petrography and routine grading measurements for organic impurities (sand only). Routiuc British (BS) and Malaysian Standard Tests (MS) 24 hour strength tests

Temperature checks on loading
Carbon content (PFA portion of
Carbon content (PFA portion of masscrete).
Routine BS/MS tests and manufacturing con
Rotine BSMS tests and manufacturing consistency tests.
nsistency tests.

Design Considerations
Design Considerations the actual insitu strength of concrete structures and the values obtained from standard concrete test specimens are recognised in many codes and standards. A materials partial safety factor is introduced to take account of these differences. Such factors consider:

- differences in compaction between the structure and the test specimen
- differences in compaction between the structure and the test specimen - variability of concrete properties and the effects of construction technique.

Currently, BS $8110^{(1)}$ includes a materials partial safety factor of $\gamma_{\mathrm{m}}=1.5$ to account for
these differences.
 additional effects of self desiccation and inhibited hydration may lead to relatively lower insitu strengths compared to standard test specimens. Additional research is required to confirm or otherwise the applicability of current materials factors.

CONCLUDING REMARKS

 relatively simple equipment and skiss
pan pambar uononusuo

 national codes. Extensive materials pretesting, combined with preconstruction trials (preferably supervised by a specialist consultant) have been shown to produce benefits in

Lack of guidance in current design codes acts against the continued exploitation of high strength concrete technology. One issue highlighted during preconstruction trials for the I! suo Malaysia ${ }^{(12)}$ are examining this issue.

aCKNOWLEDGEMENTS

 paper.394: Gurusamy and Price
Fig. 4 shows all the insitu core strength results at 46 days taken in the column. The
equivalent cube strength at 46 days is included for comparison.
The cores tests were at the following locations in the column

- Outer (surface) cores $\quad 100-250 \mathrm{~mm}$ from the surface
- Middle cores $\quad 540-740 \mathrm{~mm}$ from the surface
- Inner cores

The results indicate a further reduction in stren which is probably due to temperature effects. temperature rise at the core of the column was much is consistent with the fact that the column. In the case of $\mathrm{PC} / \mathrm{SF}$ concrete (columns) the peaker than at the outer zones of the as compared to $75^{\circ} \mathrm{C}$ at the surface. Also the bulk temperature at the core and core was $92^{\circ} \mathrm{C}$ $83^{\circ} \mathrm{C}$ and $69^{\circ} \mathrm{C}$. The equivalent values for the $\mathrm{PC} / \mathrm{SF}$ concrete was $7^{\circ} \mathrm{C}$ and surface were $\mathrm{PC} /$ masscrete/SF (column 2). The strength at the middle of the section and the core of the column are similar as the temperature variations between these locations is relatively small

Insitu Strength Measurement
Whilst the removal of cores from a high strength concrete structure is a direct means of แัดи วА! destructive methods, appropriate to use with high strength concrete can also be considered.
 with core test results. ${ }^{(8,9)}$
The rate of development apid non destructive measurement of the insitu strength would appropriate technique for development to be utilised in construction (i.e. for determining times for removal of ormwork and falsework). ${ }^{(9)}$ This in turn would lead to the potential of reduced floor to floor

THE JANUS TOWER, HANNOVER
K. MEWES
Vision 1996, Düsseldorf, Germany

Janus: Roman god of the gods, the gateway, the beginning and the end. Protector of the houJanus: Roman god of the gods,
se. Representation by a gate or a double-faced head.

The - Janus Tower - shall be sign and symbol as well as beginning of an architecture for the purposes of environmental protection and power-self-supply.

Sun, wind, water, geothermal energy are the keywords for the self-supply with energy. Furthermore the idea of a selfsupporting building shall be determined resp. symbolized by waterrecycling and internal wasterecycling.

Solar cells in annular arrangement in front of the floors, two in turbines, rainwater reservoirs and geothermal energy facilities ensure the utilization of our inexhaustible natural energies.

1. Well-known tall buildings compared to the Janus Tower

Multi-purpose High-rise Towers and Tall Buildings, edited by H.R. Viswanath. J.J.A. Tolloczko and J.N. Clarke.
Published in 1997 by E \& FN Spon, 2-6 Boundary Row, London SE1 8HN, UK. ISBN: 0419233008.

[^0]: Multi-purpose High-rise Towers and Tall Buildings Proceedings of the Third International Conference "Conquest of Vertical Space in the 21 st Century" organised by the Concrete Society London, 7-10 October 1997

